Vector Representation of Context Networks of Latent Topics

نویسندگان

  • Ondrej Hava
  • Miroslav Skrbek
  • Pavel Kordik
چکیده

Transforming of text documents to real vectors is an essential step for text mining tasks such as classification, clustering and information retrieval. The extracted vectors serve as inputs for data mining models. Large vocabularies of natural languages imply a high dimensionality of input vectors; hence a substantial dimensionality reduction has to be made. We propose a new approach to a vector representation of text documents. Our representation takes into account an order of latent topics that generate observed words; an extracted document vector includes information about the adjacency of words in a document. We experimentally proved that the proposed representation enables to build document classifiers of higher accuracy using shorter document vectors. Short but informative document vectors enable to save memory for storing data, to use simpler models that learn faster and to significantly reduce an overfit effect.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

Query expansion based on relevance feedback and latent semantic analysis

Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...

متن کامل

We know what you are going to post: User Status Generation Based on Personality and Topic

Automatic sentence generation is an easy task for humans but an extremely challenging task for computers. Recent research has shown that Recurrent Neural Networks (RNN) based language model offers a promise to perform this task. However, traditional RNN is not able to generate semantically different sentences for people with different personalities and on different topics. In this project, we p...

متن کامل

Aligning context-based statistical models of language with brain activity during reading

Many statistical models for natural language processing exist, including context-based neural networks that (1) model the previously seen context as a latent feature vector, (2) integrate successive words into the context using some learned representation (embedding), and (3) compute output probabilities for incoming words given the context. On the other hand, brain imaging studies have suggest...

متن کامل

Efficient semantic indexing via neural networks with dynamic supervised feedback

We describe a portable system for e cient semantic indexing of documents via neural networks with dynamic supervised feedback. We initially represent each document as a modified TF-IDF sparse vector and then apply a learned mapping to a compact embedding space. This mapping is produced by a shallow neural network which learns a latent representation for the textual graph linking words to nearby...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013